八年级数学教学反思

  身为一名人民教师,我们的任务之一就是课堂教学,通过教学反思可以很好地改正讲课缺点,那么问题来了,教学反思应该怎么写?下面是小编收集整理的八年级数学教学反思,欢迎阅读,希望大家能够喜欢。

八年级数学教学反思

八年级数学教学反思1

  1、根据本节课内容特点和八年级学生思维活动的特点,采用了探究教学法,通过实验操作、设疑思考、巩固掌握等腰三角形的性质,等腰三角形“等边对等角”、“等腰三线合一”特征,等腰三角形的判定方法。

  2、巩固运用等腰三角形的性质,判定方法,思考解决问题的方法和策略.在教学中应注重训练学生的正确表达数学文字语言和符号语言的转化。

  3、教学中应自然地渗透数学思想方法,如:分类讨论等,学生初步形成有分类讨论的意识,巩固运用———熟识基本图形“角平分线——平行线——等腰三角形”使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的

  4、通过对问题的分析及实际问题的解决,注重培养学生之间的合作、交流意识与语言表达能力,增强小组合作意识。进一步提高学生说理和逻辑思维的能力,逐步培养用数学的意识。主动探求新知的'动机。获得研究的乐趣,久而久之甚至发展为志趣。

  5、存在的问题:

  (1)对腰三角形性质,判定应用及知识的拓展方面较薄弱,显得深度不够。

  (2)课堂中虽有学生自主探索活动。但放得还不够,仅局限于教材中的一些知识探索显得平淡无奇。

  (3)在时间安排上,过于注重了学生知识形成过程,而对知识应用及拓展部分时间仓促,未能达到理想效果。

八年级数学教学反思2

  在今天的数学课上,我把每组的两三位学生叫到了黑板上,把前两节课学过的一次函数图像的大致画法画出来,但出乎我的预料之外的是没有一个可以完整的画得出来。我有点想不通,简简单单的k大于0上坡型,k小于0下坡型,b大于0往上平移,交y轴于正半轴,b等于0图像必过原点,b小于0往下平移交y轴于负半轴,这样的几句话都记不了。是不是我的教学有问题?还是学生上课时并不是用心来听课?不过我今天叫的这些学生上课时发呆、讲话,课外时间又没有好好的复习是他们的通病。虽然课堂是我讲话有点大声,但我并没有什么恶意,其他同学发出的笑声也不是讽刺,我们只是希望你能端正学习态度,讲究学习方法,迸发出学习的热情,一起加油,不要让全班失望,让065班的整体成绩能有所提高。

  当然除了学习上令老师担忧之外,在纪律上也令老师头痛。抽烟、喝酒、写情书谈恋爱、威胁同学请客、穿奇装异服等。老师知道现在的中学生追求个性,张扬个性,这没有什么错。步入青春期,对异性产生了好感,也是本能,但越过了警戒线就不应该了。你们知道没有,你们来到学校的主要任务是什么?是学习以后为自己终身服务的科学文化知识。怎么还心思去想别的事情呢?

  在这里,我要把下面这些良言送给你们,送给所有我的学生:

  1、年轻人犯错误,上帝都可以原谅,何况是一个普通的老师。但请你记住:上帝能够原谅的事,社会不一定会原谅;老师能够原谅的.事,老板不一定会原谅。你将生活在现实而复杂的社会,而不是中学和天堂。

  2、年轻就是资本,但年轻是学习知识和打拼事业的资本,而不是放纵自己和庸碌生活的理由。请你记住:不要以为年轻就一切还来得及,来不及的不是年龄而是在岁月流逝中所积累或错过的一切。

  3、“勿以善小而不为,勿以恶小而为之。”人的品性和素质是一个长期养成的过程,而中学时的养成往往会影响你的一生。请你记住:上课说废话、发呆、搞小动作等的确不是什么大毛病,但如果养成一种习惯,就会决定你被社会“请出去”的命运。

  4、尊重别人是一种美德,它会赢得认同、欣赏和合作。请你记住:不尊重朋友,你将失去快乐;不尊重同事,你将失去合作;不尊重领导,你将失去机会;不尊重长者,你将失去品格;不尊重自己,你将失去自我。

  5、张扬个性表达自我是一种本能,挑战权威是一种勇气。但表达自我不能伤害别人,挑战权威不能破坏规则,除非你在进行革命。请你记住:不要试图用带有道德色彩的另类行为去赢得关注,也许在目光关注的背后是心底的离弃。

  6、无知者无畏并不可怕,真正可怕的是无知者还无所谓。请你记住:不要用无所谓的态度原谅自己,对待一切,那会使一切变得对你无所谓,也会使你成为一个无所谓而又无所成的痛苦的边缘人。

  说这些话,源于自责,更多的是一个老师的良知和认知,希望你们能够理解。

八年级数学教学反思3

  《函数》是义务教育课程标准试验教科书上海科学技术版本《数学》八年级上册第十三章第一节第二课时的内容。教材从展示大量实际情景入手。螺旋式地上升对函数概念的理解,并通过从不同的侧面展示实际问题中变量与变量的相互转化,相互依存的关系,让学生从生活实例中感受常量、变量和函数的基本概念。本课内容定位于对生活中函数关系的分析,通过对实例中函数关系表示法的比较,引出函数的三种表示方法。在内容编排中,力求体现“现实内容数学化,数学内容规律化,数学内容现实化”三者统一,整个设计的意图,不仅在于引导学生观察现实生活中的现象并自觉地加以数学上的分析,而且在于通过对函数关系的理解进一步丰富学生的数学活动经验和体验。同时在学习中有意识的培养积极的情感﹑态度,促进观察﹑分析﹑归纳﹑概括等一般能力和理性思维的.发展。本节内容又是今后进一步学习一次函数二次函数等有关函数知识的基础,无论是从学习知识的角度还是对学生能力的培养方面来说本节课都具有重要的地位。

  本节以活动的形式推进、突出学生的主体地位,而教师以一个引导者的身份主导课堂,所以一定要根据课堂上出现的情况及时调整自己的问题和思路,使课堂能放且能收。多媒体网络教学环境,可以为数学教学提供丰富的学习材料,满足不同层次学生的需要,并通过优良的交互性对学生学习进行及时辅导和及时反馈、评价,以调整学习方法和策略,便于让全体学生都能掌握有用的数学知识,让每个层次的学生都各有所得。整节课是一个动眼观察、动脑归纳、巩固应用的动态生成过程,注重学生能力的培养和习惯的养成。教师是整个教学活动的组织者、策划者,学生是学习的主人。由于学生的层次不一,教师要全程关注每一个学生的学习状态,进行分层施教,对于生成过程中可能出现的突发事件,要因势利导,随机应变,适时调整教学环节,在评价时,坚持“积极评价”原则。同时将“教学反应”型评价和“教学反馈”型评价相结合,促进学生自主评价,努力推行成功教育、愉快教育的理念,把握评价的时机与尺度,实现评价主体和形式的多维化,激发学生的学习兴趣,激活课堂气氛,使课堂教学达到最佳状态。

八年级数学教学反思4

  分式方程在整个初中数学中占有十分重要的地位在本课的教学过程中,我认为应从这样的几个方面入手:

  1.分式方程和整式方程的区别:分清楚分式分式方程必须满足的'两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。

  2.分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。

  3.解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母

  4.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。

  在本节教学中,学生对于一元一次方程的解法已经十分了解,学生在解方程中一般的方法完全能够解决,在这个问题中不用过多的用时间,所有的时间全部放给学生去练习,重点让学生去练习检验这一步骤。

  通过学习,学生感到学的容易,老师教的轻松。教学效果十分理想。

八年级数学教学反思5

  一、教学设计符合学生的认知规律,以学生的实践活动作为学生思维的切入点,创建了活泼而富有活力的课堂氛围。.重视对学生能力的培养。除培养学生积极思考、主动发言的能力外,还培养了学生的审美能力、空间观念,发展了创造力,丰富了想象力以及动手操作能力,并对“割、补”有所了解。.学生在教师的引导下自主体验、建构知识,实现了知识的再创造。学生通过小组活动,在合作学习中增强与他人的合作意识。

  二、本节课的学习方式主要采用探究性学习与接受性学习相结合方式,重点放在反比例函数图象的特征与性质的探究与掌握上,力求通过这一过程使学生感受从“特殊”到“一般”的认知过程,感悟数形结合、分类、归纳、运动与变化的数学思想。

  三、本节课知识点的传授主要采用了与正比例函数相对照的方式进行的,这是根据现代建构主义的理论,从思维的最近发展区,通过有关知识的联想激活学生原有的函数知识,巧妙的引导学生发现正,反比例函数之间的区别与联系,掌握新知。由于本章内容是学生第一次接触函数思想,是学生认知上的一个难点,所以本节课引入时引导学生观察变量之间的对应关系,为下节函数内容做好铺垫。

  四、为了调动学生的积极性,整堂课采用了小组竞赛的形式,尤其关心后进生的学习状况,适时的给予鼓励,使每位学生都学到对自己有用的数学。

  五、用多媒体教学解决重点难点。

  数学学科的特点是逻辑严密、思维抽象。初中学生的认知发展尚未成熟,缺乏逻辑严谨性,导致思考问题不全面,从而对数学中抽象的性质定理较难理会,而多媒体教学技术可以通过其图象及数据的处理功能在教师的.操作下,层层深入地引导他们运用形象思维和直觉思维来处理问题,减少学习困难。在本节课的重点难点的解决过程中我都利用了几何画板的动态演示功能,在学生讨论反比例函数性质时,学生通过观察函数图象得出:“当k>0时,y值随自变量x的增大而减小;当k<0时,y值随自变量x的增大而增大”。这个结论是不完善的,必须补上“在每一象限内”这一条件。我处理这个问题时是利用多媒体图象的分解和组合技术通过在函数图象的两个分支上各取一个点,引导学生去比较相应的x、y值的变化情况,让他们自己领会出应将上述结论改为“在每一象限内,当k>0时,y值随自变量x的增大而减小;当k<0时,y值随自变量x的增大而增大”。

  二、本节课的学习方式主要采用探究性学习与接受性学习相结合方式,重点放在反比例函数图象的特征与性质的探究与掌握上,力求通过这一过程使学生感受从“特殊”到“一般”的认知过程,感悟数形结合、分类、归纳、运动与变化的数学思想。

八年级数学教学反思6

  函数的学习是初中阶段学习的重要内容之一,而一次函数在教材中的位置又是起着承前启后的重要作用。一次函数y=kx+b(k≠0)的图象与性质这一节课主要是指导学生可以通过画一次函数的大致图象很快分析出一次函数图象的性质。所谓大致图象是指能大致表示函数与两坐标轴交点是在原点、正或负半轴,以及函数的分布和增减性。

  画函数图象时,我形象地将它比喻成一个人沿着x轴的正方向行走当k>0时他就是上坡,当k<0时便下坡。课件形象地展示一次函数的图象分布和增减性的分析后,学生基本都能按先确定b的位置,根据上下坡的形象比喻画出函数的大致图象,从而说出图象的分布。

  练习:直线y=kx+b不经过第二象限,则k,b。

  在这之前我已经用课件展示了b和k是确定图象的不同分布规律。这一题让学生分组讨论,然后上黑板画出所有的情况。有一组的结果如下图:

  前三种是意料之中的,能考虑到第三种的同学已经很不错了,因为题目中并没有说明是一次函数y=kx+b(k≠0),第三种便是k=0时的常值函数的图像,关键是第四种的确也是一条直线没有过第二象限,这一组的结果赢得了全班同学的掌声,我在及时表扬了学生的聪明以后,告诉学生第四种情况不在这一题的考虑范围内。当即台下一片哗然,学生兴趣高涨,质疑声四起,我马上趁热打铁:“在学习常值函数时提到过,第四种是x=a(a>0,a为常数),这种情况中y是自变量,x是变量,所以这道题只有前三种情况。”“老师,那么答案就是k≥0且b≤0。”“对的!”我迫不及待地肯定了这位同学。“可是老师当k=0且b=0时又是什么情况,这里他们只画出了三种k>0且b=0,k>0且b<0,k=0且b<0?”又一位学生提出了质疑!全班同学安静了也不过三秒钟,马上有同学说到“那不就是直线y=0,它是和x轴重合的一条直线,坐标轴不属于任何象限,那么这条直线就没有经过第二象限。”这一题学生通过积极参与数学学习和解决问题的活动,培养了学生积极探究的态度、独立思考的习惯、实事求是的作风,发扬了团结协作的'精神、体会到了集体的力量是强大的。

  当学生完成讨论后,我悬着的心终于放下了,学生真的很了不起,他们用自己思考问题的方法和角度还能弥补老师在备课时没有想到的第四种图形。每一个学生都有成功的潜能,更何况我有53个学生。老师要想驾驭课堂,一定要充分理解学生、信任学生,要做到对学生“收”“放”自如。教师所想并非学生所想,课堂是属于学生的,教师的舞台是学生给的,要有学生的智慧我们课才能更完善。教学的过程的实质是师生共同的拥有学习过程,我们必须给学生充分的发言权、想像的空间、表达自己观点的机会。正所谓教学相长,通过交流也能让师生共同体会其中的乐趣。这节课也真正地尊重了学生,超出我的想象!

八年级数学教学反思7

  在教学实践中我觉得要提高教学效果,达到教学目的,必须在引导学生参与教学活动的全过程上做好文章:加强学生的参与意识;增加学生的参与机会;提高学生的参与质量;培养学生的参与能力。

  一、重视学习动机

  在教学过程中的激励作用,通过激发学生的参与热情,逐步强化学生的参与意识从教育心理学的角度来说,教师应操纵或控制教学过程中影响学生学习的各有关变量。在许许多多的变量中,学习动机是对学生的学习起着关键作用的一个,它是有意义学习活动的催化剂,是具有情感性的因素。只有具备良好的学习动机,学生才能对学习积极准备,集中精力,认真思考,主动地探索未知的领域。在实际教学中,向学生介绍富有教育意义的数学发展史、数学家故事、趣味数学等,通过兴趣的诱导、激发、升华使学生形成学好数学的动机。

  教学中,激发学生参与热情的方法很多。用贴近学生生活的实例引入新知,既能化难为易,又使学生倍感亲切;提出问题,设置悬念,能激励学生积极投入探求新知识的活动;对学生的学习效果及时肯定;组织竞赛;设置愉快情景等,使学生充分展示自己的才华,不断体验解决问题的愉悦。坚持这佯做,可以逐步强化学生的参与热情。

  二、重视实践活动

  在教学过程中的启智功能,通过观察、思考、讨论等形式诱导学生参与知识形成发展的全过程,尽可能增加学生的参与机会。

  在数学教学中,促使学生眼、耳、鼻、舌、身多种感官并用,让学生积累丰富的典型的感性材料,建立清晰的表象,才能更好地进行比较、分析、概括等一系列思维活动,进而真正参与到知识形成和发展的全过程中来。

  1、让学生多观察

  数学虽不同于一些实验性较强的学科,能让学生直接观察实验情况,得出结论,但数学概念的概括抽象,数学公式的发现推导,数学题目的解答论证,都可以让学生多观察。

  2、让学生多思考

  课堂教学中概念的提出与抽象,公式的提出与概括,题目解答的思路与方法的寻找,问题的辨析,知识的联系与结构,都需要学生多思考。

  3、让学生多讨论

  课堂教学中,教师的质疑、讨论、设问可讨论,问题怎样解决可讨论。通过讨论,学生间可充分发表自己的见解,达到交流进而共同提高的效果。

  此外,教学中让学生多练习、多提问、多板演等都可增加学生参与的机会。

  三、重视学习环境

  在教学过程中的作用,通过创设良好的人场关系和学习氛围激励学生学习潜能的释放,努力提高学生的参与质量和谐的师生关系便于发挥学生学习的主动性、积极性。

  现代教育家认为,要使学生积极、主动地探索求知,必须在民主、平等、友好合作师生关系基础上,创设愉悦和谐的学习气氛。因此,教师只有以自身的积极进取朴实大度、学识渊博、讲课生动有趣、教态自然大方、态度认真,治学严谨、和蔼可亲、不偏不倚等一系列行为在学生中树立起较高威信,才能有较大的感召力,才会唤起学生感情上的共鸣,以真诚友爱和关怀的态度与学生平等交往,对他们尊重、理解和信任,才能激发他们的上进心,主动地参与学习活动。教师应鼓励学生大胆地提出自己的见解,即使有时学生说得不准确、不完整,也要让他们把话说完,保护学生的积极性。

  交往沟通、求知进取和谐愉快的学习氛围为学生提供了充分发展个性的机会,教师只有善于协调好师生的双边活动,才能让大多数学生都有发表见解的机会。例如,在讨论课上教师精心设计好讨论题,进行有理有据的指导,学生之间进行讨论研究。这样学生在生动活泼、民主和谐的群体学习环境中既独立思考又相互启发,在共同完成认知的过程中加强思维表达、分析问题和解决问题能力的发展,逐步提高学生参与学习活动的质量。

  四、重视学习方法

  在教学过程中的推动作用,通过方法指导,积极组织学生的思维活动,不断提高学生的'参与能力教育心理学的研究成果表明,教师可以通过有目的的教学促使学生有意识地掌握推理方法、思维方式、学习技能和学习策略,从而提高学生参与活动的心理过程的效率来促进学习。教学过程是一个师生双边统一的活动过程。在这个过程中,教与学的矛盾决定了教需有法,教必得法,学才有路,学才有效,否则学生只会效仿例题,只会一招一式,不能举一反三。在教学中,教师不但要教知识,还要教学生如何"学"。教学中教师不能忽视,更不能代替学生的思维,而是要尽可能地使教学内容的设计贴近学生的"最近发展区"。通过设计适当的教学程序,引导学生从中悟出一定的方法。例如:学生学会一个内容后,教师就组织学生进行小结,让学生相互交流,鼓励并指导学生结合自己的实际情况。总结出个人行之有效的学习方法,对自己的学习过程进行反思,学生可以适当调整自己的学习行为,进而提高学生的参与能力。

  总之,在数学课堂教学中,教师要时时刻刻注意给学生提供参与的机会,体现学生的主体地位,充分发挥学生的主观能动作用。只有这样才能收到良好的教学效果。

八年级数学教学反思8

  本学期我校进行的课改,倡导“导思议练”“小组合作”的教学模式。要求真正体现学生是课堂的主人。本课以问题为载体,探究为主线,有意识地留给学生适度的思维空间。在我的引导下,学生自主探索,合作交流,能够较积极的参与课堂教学,主动构建新的认知结构,学生的主体地位也得到很好地保证。

  数学教育的价值并非单纯地通过积累数学事实来实现,它更多地通过对重要的数学思想方法的领悟、对数学活动经验的条理化、对数学知识的自我组织等活动实现。

  学生的数学学习过程是一个自主构建的过程,他们会带着自己原有的知识背景、活动经验走进新的学习活动,并通过自己的主动活动,包括独立思考,与他人交流和反思等,去建构对数学的理解。学生的数学学习的过程是一种再创造过程,在这一活动过程中,获得经验、对经验的分析与理解,对获得过程以及活动方式的反思至关重要。

  本节课的教学注意挖掘教材中培养创新意识的素材,在探索正方形判定方法的过程中,充分发挥了学生主体性,让学生经历自主“做数学”的过程——动手折纸,演示自制教具,并播放矩形、菱形、平行四边形的一个角、一组邻边的变化得到正方形课件,成功的达到了学生对正方形直观认识,进而探索出正方形的判定方法。为学生营造一种创新的学习氛围,把学生引上探索问题之路,成功的达到了让学生直观认识正方形的'目的。

  在例题和练习的研讨中,通过一道证明题的研讨,鼓励学生大胆尝试,同时鼓励其他同学进行互帮互助,交流自己解决问题的过程及成功的体验,给学生留下了充分的空间,不断激发学生的探索精神,培养了学生的动手操作,合作交流和逻辑推理能力,提高学生分析和解决问题的能力,使学生有成功体验。

  本节课设计的以问题为主线,培养学生有条理思考问题的习惯和归纳概括能力,并重视培养学生语言描述,然后进行引导交流形成规范语言。

  但由于学生的个体认知水平和学习能力的差异,所以在整个教学过程中,学生在解决问题时,会表现出的不同水平。

  在今后的课堂上还应注意以下几点:

  (1)应尽可能地让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平。

  (2)在学生回答时,应通过语音、目光,动作给予鼓励与赞许,发挥评价的积极功能。尤其注意鼓励学有困难的学生主动参与学习活动,发表自己的看法,肯定他们的点滴进步,对出现的错误耐心引导他们分析其产生的原因,鼓励他们改造;对学生思维的闪光点予以肯定鼓励。

  (3)数学教学由于数学学科的特点,使得数学教学要突出数学的特点,在展示数学知识的过程中,要把数学思维的教学展示出来,使学生在学习数学的结论性知识的同时获得大量的过程性知识。因此在今后的教学中我还应进一步注意培养学生逻辑表达能力和总结概括的能力。

八年级数学教学反思9

  《新课程标准》指出:学生应经历简单的数据统计过程,对数据的统计过程要有所体验,要学习一些简单的收集、整理和描述数据的方法,并能根据统计结果回答一些简单的问题。所以,教学中,我首先激发学生学习统计的兴趣,充分利用情境图,让学生乐于参与统计活动。其次,让学生参与统计的全过程,在自己的体验过程中了解填写统计表的格式,掌握收集、整理数据的方法,培养观察思考、动手操作、猜测推理的能力。

  这部分教材是在学生已经接触过简易统计表的基础上,组织学生认识条形统计图,根据统计图表中的数据进行分析,并做出一些简单的预测;学生要参加一些简单的实践活动,经历收集、整理数据的过程,并在方格纸上画出统计表。注意让学生经历统计的全过程,培养学生的统计意识。在组织学生参与统计活动时,我精心创设情境,鼓励每个学生都亲身经历统计的过程,体验到统计的必要性,培养学生的统计意识。在活动过程中,给学生充分的时间,让他们展开讨论,做出分析,进行交流。

  教学过程中,我没有把教学目标仅仅局限在掌握简单的统计方法上,而是着眼于让学生感受统计问题的产生,体验统计方法在生活中的应用。首先,通过学生自主提出想知道的问题,引发统计的`需要,这种需要很自然地转化为学生经历统计过程的内在动力。

  其次,我又试着在教学的安排上做了一点尝试。具体细节:在填统计表的教学过程中,我让学生报数我填写。我的想法是:这样做,可以让学生更具体更直接的看到图表的制作过程,让学生独自完成学习活动。我的目的是:让学生感到自己也能行,感到只有“动手又动脑,才能有创造。”

八年级数学教学反思10

  在沈阳抚顺的研讨会上,本人承担了《变量与函数》的教学任务。之前,我分别在本校与广州开发区中学分别上了一堂课。三节课,是一个实践、反思、改进、再实践的过程。经过课题组的点评与讨论,本人对概念课的教学设计与教学实践有了更深入的了解。

  本设计呈现的课堂结构为:

  (1)揭示学习目标;

  (2)引入数学原型;

  (3)抽象出数学现实,逐步达致数学形式化的概念;

  (4)巩固概念练习(概念辨析);

  (5)小结(质疑)。

  1、如何揭示学习目标

  概念课的引入要考虑学生关心的如下问题:这节课学什么概念?为什么要学这样的概念?

  数学源于生活而高于生活,数学概念的引入可从生活的需要、数学的需要等方面引入。初中涉及的函数概念的核心是“量与量之间的特殊对应关系”。本课中,本人在导言中提出两个问题:“引例1,《名侦探柯南》中有这样一个情景:柯南根据案发现场的脚印,锁定疑犯的身高。你知道其中的道理吗?”、“引例2。我们班中同学A与职业相扑运动员,谁的饭量大?你能说明理由吗?”学生对上述问题既熟悉又感到意外。问题1涉及两个量的关系,脚印确定,对应的身高有多个取值;问题2涉及多个量的关系。上述问题,不仅仅是引起学生的注意,更重要的是让学生了解客观世界中量与量之间联系的多样性、复杂性,而函数研究的正是量与量之间的各种关系中的“特殊关系”。数学研究有时从最简单、特殊的情况入手,化繁为简。让学生明确,这一节课我们只研究两个量之间的特殊对应关系。“特殊在什么地方?”学生需带着这样的问题开始这一课的学习。

  函数概念的引入应具有“整体观”,不仅要提供符合函数原型的单值对应的实例,还应提供其他的量与量之间关系的实例(如多个量的对应关系、两个量间的“一对多”关系等),使学生在更广泛的背景中经历筛选、提炼出新的数学知识的过程,逐步领悟“化繁为简”的数学研究方法。当然,这里的.问题是作为研究“背景”呈现,教学时应作“虚化”处理,以突出主要内容。

  2、如何选取合适的数学原型

  从数学的“学术形态”看,数学原型所蕴藏的数学素材应与数学概念的内涵相一致;从数学的“教育形态”看,数学原型应真实、简洁、简单。真实指的是基于学生的生活现实、数学现实,它可以是生活中的实例,也可以是学生熟悉的动漫故事、童话故事等。简洁、简单指的是问题的表述应简洁,问题情境的设置要尽可能简单,全体学生对情境中的问题不应存在太大的理解困难,设计的问题情境要能突出将要学习的新知识的本质。

  本设计采用了三个数学原型的问题:问题1,“票房收入与售出票数问题”(可用解析式表示);问题2,成绩登记表中的一次数学测试的“成绩与学号问题”(表格表示);问题3,“气温变化与时间问题”(图象表示)。这三个问题从不同层面、不同角度体现函数的“单值对应关系”,也都是学生生活中的真实问题,问题简单易懂,学生容易基于上述生活实例抽象出新的数学概念。

  由于不少学生在理解“弹簧问题”时面临列函数关系式的困难,可能冲淡对函数概念的学习,故本节课没有采用该引例。

  对于繁难的概念,我们更应注重为学生构建学生所熟悉的、简单的数学现实,化繁为简、化抽象为形象。过难、过繁的背景会成为学生学习抽象新概念的拦路虎。

  3、如何引领学生经历数学化、形式化的过程

  “数学教学是数学活动的教学”,面对抽象的数学内容,老师会想方设法创设易于学生理解的数学情境。但如何从具体的实例中提炼出数学的素材、形式化为数学知识是教学的关键环节。从具体情境到数学知识的形式化,需要教师为学生搭建合适的“脚手架”,提出能引发学生思考、过渡到数学形式化的问题。本人在学生完成问题情境的几个问题后,提出系列问题“上述几个问题中,分别涉及哪些量的关系?哪些量的变化会引会另一个量的变化?通过哪一个量可以确定另一个量?”

  在与学生的交流过程中把重点内容板书,板书注重揭示两个量间的关系,引领学生经历数学概念的形成过程,引导学生认识为什么要引进变量、常量。由问题1~3的共性“单值对应关系”与“脚印与身高”问题中反映的“一对多关系”进行对比抽象出函数的概念,逐步了解如何给数学概念下定义,并理解概念的本质特征。

  4、如何引用反例

  学生对概念的理解需要经历一个从模糊到清晰的过程,通过正例与反例的对照,才能准确理解概念的内涵。反例引用的时机、反例的量要恰到好处。过早、过多的反例会干扰学生对概念的准确理解。

  概念生成的前期提供的各种量的关系中的实例提供的是一个更为广泛的背景,让学生经历从各种关系中抽象出“特殊的单值对应关系”,从而体会产生函数概念的背景。这样的引入有利于避免概念教学中“一个定义,三点注意”的倾向。

  在本校上课时,从“气温问题”中的函数图象引导学生发现时间t取定一个值时,所得T的对应值只有一个,学生习惯性地提出问题“温度T取定一个值时,时间t是否唯一确定?”全体同学从正反两个方面认识“唯一确定”的含义,在这样的基础上再归纳出函数的定义,学生较好地掌握函数中的单值对应关系。

  在广州开发区中学上课时,在概念的形成前期,忙中出漏,没有抓住“气温问题”中的函数图象讲解“唯一确定”,特别是没有从反面(温度T=8,时间t=12~14)帮助学生理解“唯一性”,也没有强化“脚印与身高”反映的“一对多关系”,只在涉及“单值对应关系”的实例基础上引出概念,也跳过后面提到的三个反例,学生在后面的概念辨析练习中错漏较多,为纠正学生的理解花了九牛二虎之力。

  在抚顺上课时,在完成例1、例2的教学后,还用到如下反例:问题2变式“在这次数学测试中,成绩是学号的函数吗?”、问题3变式“北京春季某一天的时间t是气温T的函数吗?”、练习2(3)变式“汽车以60千米/秒的速度匀速行驶,t是s的函数吗?”,学生借助这三个逆向变式,根据生活经验理解“两个量间的对应关系”是否为“单值对应关系”,有利于学生明确“由哪一个量能唯一确定另一个量”,从而更好地理解自变量与函数的关系,更重要的是让学生养成逆向思维的习惯。

八年级数学教学反思11

  一、完成的教学内容如下:

  第十六章二次根式:本章主要内容是二次根式的概念、性质、化简和有关的计算。本章重点是理解二次根式的性质,及二次根式的化简和计算。本章的难点是正确理解二次根式的性质和运算法则。

  第十七章勾股定理本章的主要内容是勾股定理及逆定理的概念。本章要使学生能运用勾股定理解决简单问题、用勾股定理的逆定理判定直角三角形。同时注重介绍数学文化。本章的重点是勾股定理及其证明,直角三角形的边角关系,难点是运用灵活运用勾股定理解决实际问题。

  第十八章平行四边形本章的主要内容是掌握各种四边形的概念、性质、判定及它们之间的关系并能应用相关知识进行证明和计算。本章的重点是平行四边形的定义、性质和判定。难点是平行四边形与各种特殊平行四边形之间的联系和区别。本章的教学内容联系比较紧密,研究问题的思路和方法也类似,推理论证的难度也不大,教学中要注意用“集合”的思想,分清平行四边形的从属关系,梳理它们的性质和判定方法。

  共进行了三次单元测试。

  二、教学中的亮点:

  1、改变学生的学习状态,在教学中更重要的是关注学生的学习过程以及情感、态度、价值观、能力等方面的发展。

  就学习数学而言,学生一旦"学会",享受到教学活动的成功喜悦,便会强化学习动机,从而更喜欢数学。因此,教学设计要促使学生的情感和兴趣始终处于最佳状态,从而保证施教活动的.有效性和预见性。

  2、重视学习动机在教学过程中的激励作用,通过激发学生的参与热情,逐步强化学生的参与意识。学生学知识是为了用知识。但长期的应试教育使大多数学生不知道为什么学数学,学数学有什么用。因此在教学时,应针对学生的年龄特点、心理特征,密切联系学生的生活实际,精心创设情境,让学生在实际生活中运用数学知识,切实提高学生解决实际问题的能力。使大家都能深深感受到"人人学有用的数学"的新理念。经常这样训练,使学生深刻地认识到数学对于我们的生活有多么重要,学数学的价值有多大,从而激发了他们学好数学的强烈欲望,变"学数学"为"用数学"。

  三、教学中的不足:

  重视实践活动在教学过程中的启智功能,通过观察、思考、讨论等形式诱导学生参与知识形成发展的全过程,尽可能增加学生的参与机会。

  在数学教学中,促使学生眼、耳、鼻、舌、身多种感官并用,让学生积累丰富的典型的感性材料,建立清晰的表象,才能更好地进行比较、分析、概括等一系列思维活动,进而真正参与到知识形成和发展的全过程中来。

  重视学习环境在教学过程中的作用

  通过创设良好的人际关系和学习氛围激励学生学习潜能的释放,努力提高学生的参与质量。和谐的师生关系便于发挥学生学习的主动性、积极性。

  现代教育家认为,要使学生积极、主动地探索求知,必须在民主、平等、友好合作师生关系基础上,创设愉悦和谐的学习气氛。因此,教师只有以自身的积极进取、朴实大度、学识渊博、讲课生动有趣、教态自然大方、态度认真,治学严谨、和蔼可亲、不偏不倚等一系列行为在学生中树立起较高威信,才能有较大的感召力,才会唤起学生感情上的共鸣,以真诚友爱和关怀的态度与学生平等交往,对他们尊重、理解和信任,才能激发他们的上进心,主动地参与学习活动。教师应鼓励学生大胆地提出自己的见解,即使有时学生说得不准确、不完整,也要让他们把话说完,保护学生的积极性。

  交往沟通、求知进取、和谐愉快的学习氛围为学生提供了充分发展个性的机会,教师只有善于协调好师生的双边活动,才能让大多数学生都有发表见解的机会。例如,在讨论课上教师精心设计好讨论题,进行有理有据的指导,学生之间进行讨论研究。这样学生在生动活泼、民主和谐的群体学习环境中既独立思考又相互启发,在共同完成认知的过程中加强思维表达、分析问题和解决问题能力的发展,逐步提高学生参与学习活动的质量。

  5、重视学习方法在教学过程中的推动作用

  通过方法指导,积极组织学生的思维活动,不断提高学生的参与能力。教育心理学的研究成果表明,教师可以通过有目的的教学促使学生有意识地掌握推理方法、思维方式、学习技能和学习策略,从而提高学生参与活动的心理过程的效率来促进学习。教学过程是一个师生双边统一的活动过程。在这个过程中,教与学的矛盾决定了教需有法,教必得法,学才有路,学才有效,否则学生只会效仿例题,只会一招一式,不能举一反三。在教学中,教师不但要教知识,还要教学生如何“学”。教学中教师不能忽视,更不能代替学生的思维,而是

  要尽可能地使教学内容的设计贴近学生的“最近发展区”。通过设计适当的教学程序,引导学生从中悟出一定的方法。

  四:改进的措施

  在各单元的教学中首先加强基础知识的教学,重视对基本概念的教学,小学数学的基本概念是进一步学习的基础,是教学必学内容。重视这方面的教学有助于学生形成正确的分析和判断能力,能正确地分析,这是学习数学必备的能力。

  在课堂教学中或者每次单元考试后,各个单元都暴露出一些问题。计算不过关、学生理解能力不够强、空间观念不强、学生的学习习惯和学习能力上所存在的问题。从期末试卷中所反映出来的问题中。在今后的数学教学中还是要从以下几方面着手。

  整体的数学教学还是要从最基础的抓起,计算是基础中的基础。从试卷上所反映出来的问题说明本班学生在最基本的计算上还有待于加强。其次是培养学生分析问题的能力,解题的关健是会分析,分析能力的提高,才能更有效地解决问题的。再次学生的形象思维能力还有待于加强,对于图形题、作图题这类比较抽象的空间思维能力的题,学生的解决能力还存在欠缺。我们学习数学的目的就是为了解决问题。在解决问题还要加强学生分析问题、概括问题、发现问题的能力,在教学中多重视学生的反馈,注重学生学习能力的培养。最后还是要从自身教学水平和教学能力上去分析,加强业务学习,注重课堂教学,认真对待每一次的教学,及时反思,及时总结。

八年级数学教学反思12

  1、合作交流中收益。通过思考问题,鼓励学生在独立思考的基础上,积极地参与到对数学问题的讨论中来,勇于发表自己的观点,善于理解他人的见解,在交流中获益。

  2、体现学生是学习的主人,学会了类比的思想方法,培养了语言表达和概括知识的能力。分数基本性质、分数约分的基础上,学习分式基本性质、分式约分方法。这一过程由学生自己学习、归纳,这样学生可以把新旧知识联系起来,学起来也不觉得困难,从而激起学生学习的积极性,同时也可以让学生体会到类比的思想。由学生自己归纳,体现了学生是学习的主人,可以培养学生的语言表达能力和总结知识的能力。

  3、培养学生观察、分析问题的能力,提高学生的逻辑思维。通过对等式的变形填空练习,让学生观察分子或分母变化,想分母或分子的变化,提高学生的思维能力。

  4、整节课下来,效果还不错。

  存在问题

  1、学生基础差(思维基础和知识基础都差),对因式分解的知识点忘记的比记住的多,我花了将近三分之一的时间复习。当分母是多项式且能分解因式时,往往没想以先分解因式,或不会分解因式。

  2、约分的结果有的`不是最简分式或整式(公因式没找完)。

  3、由于时间问题,练习做的不多。

  思考与措施

  1、完成教学任务与学生参与时间的矛盾。

  课改是“以学生发展为本”,而其中重要的一点是让学生参与教学活动。而在这堂课的有限时间内中,给予学生思考、讨论和发表意见的时间还不够充分,这也是教师平时教学中的困惑和矛盾,如何来协调的确值得探讨。

  2、要精练课堂教学过程,从而真正达到“课堂教学是为学生服务”这一宗旨。

八年级数学教学反思13

  本课时学习目标:

  1.通过操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。

  2. 能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。

  3. 进一步增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。

  本课时重点难点:平均数的意义及求平均数的方法。

  学习过程

  自学准备与知识导学:

  1、预习课本92-93页的内容,不明白的地方标出来。

  2、通过预习,我认为男生与女生相比, 套得准,因为小组内交流预习情况

  学习交流与问题研讨:

  1、要判断男生套的准还是女生套的准,为什么要分别求出男、女生平均每人套中的个数?

  2、出示学习菜单:

  (1)书中有几种方法求男生平均成绩的?谁能给大家介绍介绍?

  (2)仔细看统计图的变化过程,思考是如何分的?

  (3)怎样列算式计算?

  归纳总结:要求平均数,可以先求出( )数,再()。

  3、研究平均数的意义。

  (1)这个7分就是男生每人实际得分吗?你是怎么理解的?

  (2)请你仔细观察平均数与原来的这一组数,你发现了什么?

  4、算女生平均分。

  (1)先估计女生平均每人套中多少个?你是怎么想的?

  (2)大家估计得准不准呢?用什么方法验证一下?

  (3)说说你的验证方法。

  (4)为什么要除以5?

  小组讨论菜单中的问题

  点拨:这种方法叫:“移多补少”

  点拨:这种方法叫:“求和均分”

  小组交流,教师巡视,给予指导。

  练习检测与问题延伸:

  1、出示“想想做做”第一题

  (1)怎样移动笔筒里的铅笔?

  (2)你还有其他的方法吗?

  (3)如果从第一个笔筒里拿出3枝放入第二个笔筒,再从第二个笔筒里拿出5枝放入第三个笔筒,平均每个笔筒里有多少枝?

  (4)如果从第三个笔筒里拿出3枝放入第二个笔筒,再从第一个笔筒里拿出3枝放入第二个笔筒,平均每个笔筒里有多少枝?

  (5)关于笔筒的.三个平均数,有变化吗?为什么?

  2、“想想做做”第二题

  说说你是怎样做的?

  3、小林参加了三场套圈比赛,下面是小林套中个数的统计:

  第一次

  第二次

  第三次

  平均成绩

  小 林

  12

  11

  10

  小林第三次套中的个数是多少呢?

  4、教材第97页的“你知道吗?”

  5、检测:想想做做第3、4题

  小组交流、汇报

  根据学生解决实际问题中出现的问题,进行进一步的明确指导。

  学生独立完成检测,教师巡视,给予差生适当的帮助。

  课后反思或经验总结:

  平均数是统计中的一个重要概念,对于三年级的学生来说它非常抽象。以往在教学平均数的概念时,教师往往把教学重点放在平均数的求法上。新教材更重视让学生理解平均数的意义。基于这一认识,我在设计中结合实际问题(男女生套圈比赛)哪个队会获胜?要判断男生套的准还是女生套的准,为什么要分别求出男、女生平均每人套中的个数?引导学生展开交流、思考。在学生的活动讨论中,认识到平均数能代表他们的整体情况,因此产生了“平均数”,感受平均数是实际生活的需要,也产生了学习“平均数”的需求。教学只有组织了这个过程,学生对平均数的统计意义以及作用才有比较深刻的理解,也才能在面临相类似问题时,能自主地想到用平均数作为一组数据的代表,去进行比较和分析。

  另外, 我采用了小组合作,自主探究的方式让学生自己探索出求平均数的方法。一种是移多补少,一种是求和均分。然后引导学生感受到这两种方法的本质都是让原来不相同的数变的相同,从而引出平均数的概念。并在讲解方法的同时,不失时机地渗透:平均数处于一组数据的最大值和最小值之间,能反映整体水平,但不能代表每个个体的情况。这样一来,学生对平均数这一概念的认识显得更为深刻和全面。

八年级数学教学反思14

  在讲解勾股定理的结论时,为了让学生更好地理解和掌握勾股定理的探索过程,先让学生自己进行探索,然后同学进行讨论,最后上台演示。这样可以加深学生的参与,也让师生间、生生间有了互动。然后老师再利用电脑演示直角三角形中勾股定理的探索过程。反复演示几遍,让学生自己感觉并最后体会到勾股定理的结论。通过动画演示体会到解决问题的方法是多种多样,使得这课的重难点轻易地突破,大大提高了教学效率,培养了学生的解决问题的能力和创新能力。学生在这一过程中各显神通,都得到了解决问题的满足感和自豪感。

  在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:即折竹抵地问题。同学们一看,兴趣来了。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生的想象力。

  最后介绍了勾股定理的历史,并且推荐了一些网站,让学生下课之后进行查阅、了解。只是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的资源。这种对网络资源的重新组织,使学生对知识的需求由窄到宽,有力的促进了自主学习。这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方法。这就达到了新课标新理念的预定目标。

  数学有与其他学科不同的特点,自然科学常发生新理论代替旧理论的`情形,但数学不会如此。数学学习是数学发展史的缩影,是一个累进过程。勾股定理是人类几千年的文化遗产,是经典的定理,拥有科学简洁的数学语言。而数学教学的核心不是知识本身,而是数学的思维方式。认识是个人独特的构造结果,人的思维活动有强烈的个性特征。每个学生都有自己的生活背景、家庭环境,这种特定的文化氛围,导致不同的学生有不同的思维方式和解决问题的策略。学生已有丰富的数学活动经验,特别是运用数学解决问题的策略。学生只有用自己创造与体验的方法来学习数学,才能真正地掌握数学。因而数学教学要展现数学的思维过程,要学生领会和实现数学化,自己去“发现”结果。这一课的学习就主要通过让学生自主地探索知识,从而将其转化为自己的,真正做到了先激发兴趣,再合作交流,最后展示成果的自主学习。这堂课将信息技术融入利于创设教学环境,教学模式将从以教师讲授为主转为以学生动脑动手自主研究、小组学习讨论交流为主,把数学课堂转为“数学实验室”,学生通过自己的活动得出结论、使创新精神与实践能力得到了发展。

八年级数学教学反思15

  结合数学内容,布置有个性发展的兴趣作业,培养学生的创新能力。

  在初二上期,同学们对乘方知识掌握比较牢固之时,我给学生留了一道作业:

  观察下列等式:

  13=12

  13+23=32

  13+23+33=62

  13+23+33+43=102

  …

  猜想:当有n项立方相加时的计算结果是_________。

  第二天过去了,没人应答;第三天过去了,没人应答;第四天,有几位同学找到我,递给我答案:

  当我点头示意时,他们竟高兴得欢呼起来,甚至有一个同学竟哽咽起来。是啊!同学要通过观察、思考,再通过猜想,探索规律,从而完成从特殊到一般的创新过程,而且跟应该注意到学生这方面的数学基础,很大程度都还不具备,但却能超出个人能力完成任务,实属不易。更难能可贵的是,学生的创新意识得到突破,创新能力得到了提高,这是何等的重要啊!

  兴趣就是最好的老师。让学生通过自己钻研所得到的结果肯定是印象深刻的,以往的经验告诉我很多学生之所以害怕学习数学,就是因为他们经常体验不到成功的喜悦,没有成就感,只是在感受到学习数学的失败,无论家长、老师如何引导,学生都会产生强烈的自卑感,数学学习无法正常进行。我本人也欣赏成功教学模式,让每一个层次的'学生都能够感受到学习的成就感,课堂上的一个小问题可能就会点燃学生思维的火炬。